Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance.

نویسندگان

  • John E Drake
  • Mark G Tjoelker
  • Angelica Vårhammar
  • Belinda E Medlyn
  • Peter B Reich
  • Andrea Leigh
  • Sebastian Pfautsch
  • Chris J Blackman
  • Rosana López
  • Michael J Aspinwall
  • Kristine Y Crous
  • Remko A Duursma
  • Dushan Kumarathunge
  • Martin G De Kauwe
  • Mingkai Jiang
  • Adrienne B Nicotra
  • David T Tissue
  • Brendan Choat
  • Owen K Atkin
  • Craig V M Barton
چکیده

Heatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3°C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43°C, while monitoring whole-canopy exchange of CO2 and H2 O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3°C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal limits of leaf metabolism across biomes.

High-temperature tolerance in plants is important in a warming world, with extreme heat waves predicted to increase in frequency and duration, potentially leading to lethal heating of leaves. Global patterns of high-temperature tolerance are documented in animals, but generally not in plants, limiting our ability to assess risks associated with climate warming. To assess whether there are globa...

متن کامل

Best of Both Worlds: Simultaneous High-Light and Shade-Tolerance Adaptations within Individual Leaves of the Living Stone Lithops aucampiae

"Living stones" (Lithops spp.) display some of the most extreme morphological and physiological adaptations in the plant kingdom to tolerate the xeric environments in which they grow. The physiological mechanisms that optimise the photosynthetic processes of Lithops spp. while minimising transpirational water loss in both above- and below-ground tissues remain unclear. Our experiments have show...

متن کامل

Leaf energy balance modelling as a tool to infer habitat preference in the early angiosperms

Despite more than a century of research, some key aspects of habitat preference and ecology of the earliest angiosperms remain poorly constrained. Proposed growth ecology has varied from opportunistic weedy species growing in full sun to slow-growing species limited to the shaded understorey of gymnosperm forests. Evidence suggests that the earliest angiosperms possessed low transpiration rates...

متن کامل

CFD analysis of transpirational cooling by vegetation: Case study for specific meteorological conditions during a heat wave in Arnhem, Netherlands

The transpirational cooling of vegetation as a measure to mitigate outdoor air temperatures was investigated for a street canyon in the city center of Arnhem, the Netherlands for the meteorological conditions of an afternoon hour on a hot summer day during a heat wave with wind of speed 5.1 m s 1 at 10 m above ground and direction along the canyon. Computational Fluid Dynamics (CFD) simulations...

متن کامل

Improved Climate Risk Simulations for Rice in Arid Environments

We integrated recent research on cardinal temperatures for phenology and early leaf growth, spikelet formation, early morning flowering, transpirational cooling, and heat- and cold-induced sterility into an existing to crop growth model ORYZA2000. We compared for an arid environment observed potential yields with yields simulated with default ORYZA2000, with modified subversions of ORYZA2000 an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Global change biology

دوره   شماره 

صفحات  -

تاریخ انتشار 2018